Application of the Extended Hückel Molecular Orbital Method to the Properties of Vinyl Cations. Conformational Energies of Some 1-Cyclopropylvinyl Cations and a Comparison of Sn2 Displacements at Saturated and Vinyl Carbon

Donald R. Kelsey ${ }^{\text {la }}$ and Robert G. Bergman*1b
Contribution No. 4112 from the Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California 91109. Received July 28, 1970

Abstract

The extended Hückel molecular orbital method developed by Hoffmann has been used to examine the predicted properties of a number of 1 -cyclopropylvinyl cations. The calculations suggest that the ions in all cases are most stable in the linear, "bisected" conformation, and some indication of carbon-carbon hyperconjugation is found in one methyl-substituted derivative. In addition, a study of parts of the energy surfaces for attack of hydride ion upon ethane and ethylene supports the postulate that SN 2 displacement is energetically more favorable at saturated than at vinyl carbon.

In this paper we report the results of an examination of some of our inferences about the preferred conformations of cyclopropylvinyl cations ${ }^{2}$ through the use of the extended Hückel (EHT) molecular orbital method developed by Hoffmann. ${ }^{3}$ We also describe a study of possible pathways for $\mathrm{S}_{\mathrm{N}} 2$ substitution at saturated and vinyl carbon centers. The serious approximations inherent in EHT calculations have been discussed, ${ }^{4}$ as have the errors involved in using EHT calculations for charged species, ${ }^{5}$ but we feel that the results of most of the calculations which have been reported appear to reflect fairly accurately the relative energies and other properties of molecules or conformations which are structurally similar to one another, although absolute values calculated for these properties are much more ambiguous. ${ }^{6}$ The results on vinyl cation systems described below reinforce these notions.

Conformations of Cyclopropylvinyl Cations

Initially we examined the energies of some relatively specific conformations of cation 1. Ideally, one would like to explore the variations in potential energy with respect to all the degrees of freedom of a given molecule. However, this is extremely expensive and, in any case, it is not clear that the energy will tend to reach a minimum at the correct bond lengths and angles, even for calculations more sophisticated than those of the extended Hückel type. ${ }^{7}$ We have, therefore, limited
(1) (a) National Science Foundation Predoctoral Fellow, 1968present; (b) Alfred P. Sloan Foundation Fellow, 1970-1972; Camille and Henry Dreyfus Teacher-Scholar Grant Awardee, 1970-1975.
(2) (a) S. A. Sherrod and R. G. Bergman, J. Amer. Chem. Soc., 92, 2115 (1969); (b) ibid., 93, 1925 (1971); (c) D. R. Kelsey and R. G. Bergman, ibid., 92, 228 (1970); (d) ibid., 93, 1941 (1971).
(3) (a) R. Hoffmann and W. N. Lipscomb, J. Chem. Phys., 36, 2179, 3489 (1962); (b) R. Hoffmann, ibid., 39, 1397 (1963).
(4) See, for example, (a) M. J. S. Dewar and E. Haselbach, J. Amer. Chem. Soc., 92, 590 (1970); (b) N. Bodor, M. J. S. Dewar, A. Harget, and E. Haselbach, ibid., 92, 3854 (1970); (c) M. J. S. Dewar, "The Molecular Orbital Theory of Organic Chemistry," McGraw-Hill, New York, N. Y., 1969, pp 442-443.
(5) (a) R. Hoffmann, J. Chem. Phys., 40, 2480 (1964); (b) T. Yonezawa, H. Nakatsuji, and H. Kato, J. Amer. Chem. Soc., 90, 1239 (1968).
(6) For some recent applications, see (a) R. Hoffmann, E. Heilbronner, and R. Gleiter, ibid., 92, 706 (1970); (b) W. Adam, A. Grimison, and R. Hoffmann, ibid., 91, 2590 (1969), and earlier papers.
our exploration to a small portion of the potential surface, and have fixed all bond lengths and other bond angles at standard ${ }^{8}$ values.

We first investigated the dependence of the total energy of cation 1 on the relative orientation of the cyclopropane ring and the empty p orbital at the vinyl carbon carrying the formal positive charge. This appeared to be a reasonable place to begin because a similar calculation had been carried out previously, along with an analogous investigation of the conformations of the aliphatic cyclopropylcarbinyl cation. ${ }^{9}$ Figure 1 shows the calculated potential curve depicting the energy change with respect to θ, the angle between the empty orbital and methine $\mathrm{C}-\mathrm{H}$ bond. The

calculated energy difference between the extreme conformations 1 a and $\mathbf{1 b}$ is $6.67 \mathrm{kcal} / \mathrm{mol}$. That this is a reasonable value is suggested by the fact that Hoffman ${ }^{5 a}$ has calculated an $8.86 \mathrm{kcal} / \mathrm{mol}$ energy difference between the analogous aliphatic cation conformers 2a and $\mathbf{2 b}$, and Wiberg has estimated an $8 \mathrm{kcal} / \mathrm{mol}$ difference between 2a and 2b using Pople's self-con-sistent-field modification of the extended Hückel
(7) (a) G. A. Segal, J. Chem. Phys., 47, 1876 (1967); (b) K. B. Wiberg, J. Amer. Chem. Soc., 90, 59 (1968).
(8) Double-precision calculations were carried out on an IBM 360/75 computer. Fixed bond lengths and angles used are the following (distances in ångströms). The $\mathrm{C}_{1}-\mathrm{C}_{3}$ length of $1.46 \AA$ was chosen to

conform with the $\mathrm{C}-\mathrm{C}$ bond length in methylacetylene. See "Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc., Spec. Publ., No. 11, M147, M149 (1958); No. 18, S16s, S18s, M96s, M107s, M112s (1965).
(9) J. E. Baldwin and W. D. Foglesong, J. Amer. Chem. Soc., 90, 4311 (1968).

Figure 1. Calculated energy of the linear 1-cyclopropylvinyl cation as a function of cyclopropyl ring orientation.
method. ${ }^{10}$ Recent experimental evidence indicates the barrier to rotation in $\mathbf{2 a - 2 b}$ is about $14 \mathrm{kcal} / \mathrm{mol} .{ }^{11}$

Although we have not employed iterative procedures for optimization of the parameters used in the calculations, ${ }^{9}$ we have carried out some arbitrary variations

Table I. Effect of Parameter Variation on Energies Calculated for the 1-Cyclopropylvinyl Cation (1)

Atom	Orbital	Slater exponent	Coulomb integral	$E_{1 a}$	$E_{1 \mathrm{~b}}$	ΔE
H	1 s	1.2	-13.06	-9985.79	-9979.12	
C	2 s	1.625	-19.44			6.67
	2p	1.625	-10.67			
C_{C}	1 s	1.0	-13.60			
	2 s	1.625	-21.01	-10516.62	-10512.13	4.49
	2p	1.625	-11.27			
H	1 s	1.2	-13.60	-10590.86	-10583.97	6.89
C	2 s	1.625	-21.01			
	2p	1.625	-11.27			
C_{C}	1 s	1.0	-13.06			
	2 s	1.625	-19.44	-9913.89	-9909.52	4.37
	2p	1.625	-10.67			

(10) K. B. Wiberg, Tetrahedron, 24, 1083 (1968).
(11) D. S. Kabakoff and E. Namanworth, J. Amer. Chem. Soc., 92, 3235 (1970).

Figure 2. Energies calculated for the 1-cyclopropylvinyl cation as a function of bond angle ϕ.
to examine their effect on the relative energies of $\mathbf{1 a}$ and 1b. As one can see in Table I, moderate variation of Slater exponents and Coulomb integrals causes large changes in the absolute energies calculated, but relatively small fluctuations in the energy difference between the two extreme conformations. This reinforces our feeling that this difference may well provide an accurate picture of the real situation, and emphasizes the ambiguity of absolute total energy values calculated using this method.

The parameters used to obtain the data presented in Figure 1 were those which appeared to give the most reasonable charge distributions. ${ }^{12}$ The charge distributions and overlap populations calculated for the most stable conformation 1a are illustrated in Scheme I. As would be expected, the charge distribution in the less stable conformer 1b indicates less charge delocalization (Scheme II).

Scheme I. Charge Distribution and Overlap Populations Calculated for the Most Stable Conformation of the 1-Cyclopropylvinyl Cation (1a)

Scheme II. Charge Distribution and Overlap Populations Calculated for the Less Stable Conformation of the 1-Cyclopropylvinyl Cation (1b)

(12) These are the values used by J, A. Pople and G. A. Segal, J. Chem. Phys., 43, S136 (1965).

Figure 3. Calculated energies of the 1-cyclopropylvinyl cation as a function of twist angle β with ϕ fixed at 60°.

These calculations provide some support for our deductions concerning the stabilization of cation 1 (and presumably of the transition state leading to 1) by the cyclopropyl group adjacent to the ionization center, and about the mechanism by which this stabilization occurs. ${ }^{2}$ We next sought to examine the probability that the configuration of the cation at the ionization center is linear. In this case, all bond distances were fixed at the standard values, as in the previous calculation, as were all bond angles except the $\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{3}$ angle ϕ (Figure 2). This angle was varied in the most stable conformer 1a; the method clearly predicts a minimum at the linear structure (Figure 2). It is amusing that if the angle ϕ is set at 60°, and the cyclopropyl ring rotated about the $\mathrm{C}_{1}-\mathrm{C}_{3}$ bond as was done for the linear ion (Figure 1), the 0 and 90° rotamers $\mathbf{3 a}$ and $\mathbf{3 b}$ have the same relative stability as do 1a and $\mathbf{1 b}$; i.e., they are still predicted to differ in energy by $7 \mathrm{kcal} / \mathrm{mol}$ (Figure 3). The calculations therefore suggest that a cyclopropyl group stabilizes an adjacent charge placed initially in a p orbital to about the same extent (energetically) that it stabilizes such a charge placed in an sp^{2} hybrid orbital.

The charge distribution and overlap populations calculated for the "bent" cation in its most stable conformation (3a) indicate more electron delocalization (vide infra) from the vinyl hydrogen trans to the "empty" orbital than from the cis hydrogen (Scheme III). This is in general agreement with other "trans" interactions in ethylenes, e.g., elimination of HX from $\mathrm{CRH}=$ CHX. ${ }^{13}$ A similar kind of "trans" effect has been noted in Hoffmann's calculations. ${ }^{52}$
(13) G. Köbrich, Angew. Chem., Int. Ed. Engl., 4, 49 (1965).

Figure 4. Energies calculated for the "trans"-1-cyclopropylpropenyl cation as the orientation of the ring is varied.

We also used the extended Hückel method to study the l-cyclopropylpropenyl cation, 4. ${ }^{14 \mathrm{a}}$ The bond lengths and angles were fixed as before, ${ }^{8}$ and the Slater exponents and Coulomb integral values were those used for calculations on the parent ion, ${ }^{12}$ Again, for the
Scheme III, Charge Distribution and Overlap Populations
Calculated for the Most Stable Conformer of the
"Bent" 1-Cyclopropylvinyl Cation (3a)

linear configuration, the "bisected" conformation is calculated to be $6.72 \mathrm{kcal} / \mathrm{mol}$ more stable than the 90° rotamer. Rotation of the vinyl methyl group does not affect this relative energy difference at all ($<0.05 \mathrm{kca} /$ mol). However, the energy of the "bisected" conformation is lowest when one methyl hydrogen is parallel to the $\mathrm{C}=\mathrm{C}$ bond and pointed toward the cationic center, ${ }^{14 \mathrm{~b}}$ as shown in Scheme IV.
Scheme IV. Relative Energies of the "Bisected" 1-Cyclopropylpropenyl Cation with Various Orientations of the Vinyl Methyl Group

4a
$\Delta E \quad-1.0$
$\underset{(\mathrm{kcal} / \mathrm{mol})}{ }{ }^{-1}$

$4 b$ -0.5

4 c
0.0

[^0]

Figure 5. Energies calculated for the "cis"-1-cyclopropylpropenyl cation as a function of ring orientation.

We have also calculated the energies of various conformations of "bent" trans- and cis-1-cyclopropylpropenyl cations ($\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{4}$ angle $=120^{\circ}$) in which the orientations of the cyclopropyl ring and of the methyl group (analogous to 4 a and 4 c) were varied. trans-1Cyclopropylpropenyl cation shows a similar energy change (Figure 4) when the cyclopropyl ring is rotated as occurs for the "bent" parent ion (Figure 3). With the cyclopropyl ring orientation fixed ($\beta \approx 100^{\circ}$) the most stable conformation of the methyl group is with one hydrogen directed toward the cationic carbon, 5a. Structure $\mathbf{5 b}$ is less stable by $0.6 \mathrm{kcal} / \mathrm{mol}$.

Similar calculations on the cis isomer show a rather formidable barrier ($>90 \mathrm{kcal} / \mathrm{mol}$) to rotation of the cyclopropyl ring past the vinyl methyl group (Figure 5). However, the energy difference between the most stable conformation ($\beta \approx 120^{\circ}$) and the structure with the cyclopropyl ring directed away from the methyl group ($\beta=180^{\circ}$) is still about $7 \mathrm{kcal} / \mathrm{mol}$. It is interesting that at the minimum ($\beta \approx 120^{\circ}$) conformation $\mathbf{6 b}$ is more stable by $2.34 \mathrm{kcal} / \mathrm{mol}$ than 6 a , in contrast to the situation in the trans system.
If one compares the most stable trans cation configuration ($\mathbf{5 a}, \beta \approx 100^{\circ}$) to the most stable cis cation configuration ($\mathbf{6 b}, \beta \approx 120^{\circ}$), the latter is found to be more stable by $\sim 2.3 \mathrm{kcal} / \mathrm{mol}$. This at first was surprising, since it was expected that steric interactions in the cis cation would prevent effective stabilization of
the cation by the cyclopropyl ring. An examination of the charge distributions and overlap populations for the two isomers (Scheme V) suggests that a methyl

Scheme V. Charge Distributions and Pertinent Overlap
Populations Calculated for the Most Stable Conformations of the trans- $\left(5 \mathbf{a}, \beta \approx 100^{\circ}\right.$), cis- ($6 \mathbf{b}, \beta \approx 120^{\circ}$), and
Linear (4a) 1-Cyclopropylpropenyl Cations

group trans to the empty orbital may stabilize the charge at the cationic center more effectively than either a cis methyl group or a trans vinyl hydrogen. (One might call this a carbon-carbon hyperconjugation effect. ${ }^{15}$) In particular, the overlap population of the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond decreases from 0.73 to 0.69 when the methyl group is changed from a cis relationship to the empty orbital to a trans relationship. The charge at the methyl carbon changes from -0.04 to +0.08 . Similar changes, though of smaller magnitude, occur for the vinyl hydrogen. These shifts indicate, at least qualitatively, a delocalization of electrons out of the bond situated trans to the empty orbital. This effect appears to be more dramatic when the substituent is methyl rather than H . However, one must be cautious in comparing these effects on the charges and overlap populations with the differences in total energy between 5 a and $\mathbf{5 b}$, since this energy difference is highly dependent on the orientation of the methyl hydrogens.
It is instructive, also, to compare the charge distributions and overlap populations of the linear cation $\mathbf{4 a}$ with those of the unsubstituted ion, 1a. The charges located on the cyclopropyl ring carbons and hydrogens are nearly identical for the two structures. Likewise, the overlap populations for the bonds of the ring and all bonds connected to the ring remain the same. Yet in the methyl-substituted cation, the charges at the cationic center and the adjacent vinylic carbon have decreased in magnitude, +0.54 to +0.43 and -0.13 to -0.01 , respectively. The overlap population between these carbons has increased from 1.37 to 1.40 . The greater extent of delocalization of charge in 4 a must be entirely due to the methyl substituent. ${ }^{14 a}$
(15) F. R. Jensen and B. E. Smart, J. Amer. Chem. Soc., 91, 5686 (1969), and references cited there.

If we assume that these calculations are qualitatively correct with regard to the relative stabilities of the trans- and cis-1-cyclopropylpropenyl cations, rapidly equilibrating isomeric ions should produce a preponderance of product resulting from solvent trapping of the cis cation, $\mathbf{6 b}$, for the following reasons: (1) the cis cation is calculated to be up to $2.3 \mathrm{kcal} / \mathrm{mol}$ more stable than the trans cation. If the rate of interconversion of the cations is $10-10^{2}$ times faster than solvent capture, ${ }^{2 d}$ the cis cation would predominate throughout the reaction; (2) solvent trapping of the trans cation should be less favorable because of steric hindrance by the methyl group to approach of a solvent molecule (although this effect may in fact be small ${ }^{16}$). In fact, a nearly $1: 1$ mixture of stereoisomeric cis- and trans-1cyclopropylpropenyl acetates is the experimental result. ${ }^{2 \mathrm{~d}}$ The slight excess of cis-acetate found in most runs ${ }^{2 d}$ can be rationalized as reflecting a slightly more favorable attack of solvent on the linear molecule, 4a, opposite from the methyl group. ${ }^{16}$

One must keep in mind, however, that, in addition to containing inherent inaccuracies and limitations, EHT calculations reflect energies for unsolvated molecules in the gas phase. Since we are dealing with charged species, extrapolation from the gas-phase calculations to solution chemistry should be even more dangerous than when we are dealing with neutral molecules.

The Nucleophílic Displacement Reaction

The displacement reaction at a saturated carbon center, eq 1 , has been extensively studied for several years. ${ }^{17}$ Only recently has it been shown ${ }^{2}$ that the displacement at a vinylic center, eq 2, can occur via

$$
\begin{align*}
& \mathrm{Y}:+\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}=\mathrm{C}_{\mathrm{X}}^{\mathrm{R}_{8}} \rightarrow \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}=\mathrm{C}_{\mathrm{Y}}^{\mathrm{R}_{3}}+\mathrm{X}: \tag{2}
\end{align*}
$$

vinyl cations. There are, of course, several other possible pathways for substitution at vinyl carbon, such as elimination-addition or addition-elimination. ${ }^{2 \mathrm{~d}}$ However, only two mechanisms preserve the carboncarbon double bond throughout the reaction: the SN1 reaction and the $\mathrm{S}_{\mathrm{N}} 2$ reaction (eq 3).

[^1]To our knowledge the direct displacement reaction has not been observed for vinylic systems, although the possibility of such a reaction path was considered some time ago, ${ }^{18}$ and this mechanism has been assumed to occur in at least one instance. ${ }^{19}$ It may be that displacement at a vinylic center is energetically unfavorable, but there is no clear evidence against such a reaction taking place under the appropriate conditions. ${ }^{20}$ The atomic orbital configuration for the vinyl SN 2 transition state should look very much like a "specifically solvated" vinyl cation, as shown in Scheme VI.

Scheme VI. Possible Atomic Orbital Configuration for the Transition State Involved in Displacement at a Vinylic Center

In view of the paucity of experimental or theoretical data concerning $\operatorname{SN} 2$ displacement at an sp^{2}-hybridized carbon, we chose to "look" at the SN2 attack of a hydride ion on ethane and on ethylene using the extended Hückel (EHT) method. ${ }^{3}$ A comparison of the two calculations should allow one to estimate if, indeed, direct displacement at the vinylic center is an energetically unfavorable reaction pathway.

Ethane. Even for such a small molecule as ethane, it is extremely difficult to minimize energy with respect to all possible degrees of freedom along the reaction coordinate. At least 11 bond lengths, bond angles, and twist angles could be varied, and the cost of such an extensive calculation would be prohibitive, even though a single EHT calculation is relatively inexpensive. We therefore allowed only five degrees of freedom to vary. The fixed bond lengths and angles, the variable bond lengths and angles, and the orientation of the molecule and the hydride ion are shown in Scheme VII.
Scheme VII. The Fixed and Variable Bond Lengths and Angles for Hydride Attack on Ethane

The nonreacting bond lengths were fixed at $1.10 \AA$ $(\mathrm{C}-\mathrm{H})$ and $1.54 \AA(\mathrm{C}-\mathrm{C})$. The molecule is shown in the staggered conformation with $\mathrm{H}_{6} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{H}_{1}$ and H_{7} in the $x z$ plane. H_{4} and H_{3} extend in the $+y$ direction; H_{2} and H_{5} in the $-y$ direction. The hydride ion, H_{7}, approaches C_{2} at the backside relative to H_{6}, which will
(18) V. Gold, J. Chem. Soc., 1430 (1951).
(19) S. D. Ross, W. A. Leach, and I. Kuntz, J. Amer. Chem. Soc., 74, 2908 (1952).
(20) For a discussion on the unfavorability of an SN_{2} reaction at a vinylic carbon, see S. I. Miller, Advan. Phys. Org. Chem., 6, 265 (1968), and S. I. Miller and P. K. Yonan, J. Amer. Chem. Soc., 79, 5931 (1957).

Figure 6. Calculated energies for energy-minimized configurations (lower curve) and symmetrical configurations (upper curve) for H^{-} attack on ethane.
eventually leave as a hydride ion. The variable parameters are as follows: D, the "forming" bond length; α, the approach angle of $\mathrm{H}_{7}-$ in the $x z$ plane; d, the "breaking" bond length; β, the orientation of H_{6} in the $x z$ plane; θ, the twist angle orientation of the nonreacting hydrogens, H_{4} and H_{5}, relative to the $x z$ plane. The $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{H}_{4}=\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{H}_{5}$ angles, γ, were made into pseudovariables and arbitrarily varied from 109.47 to 120° as θ varied from 60 to 90°.

First, however, we decided to establish a "calibration" for our S N2 surface by carrying out calculations on a set of symmetrical states in which $D=d$ and only the angle α and forming and breaking $\mathrm{C}-\mathrm{H}$ bonds are varied (Scheme VIII). It was expected that the subsequently calculated S_{N} 2 energy curve would intersect this "symmetrical" curve at an energy close to that corresponding to the $\mathrm{S}_{\mathrm{N}} 2$ transition state.

The energies for this geometry were calculated for $D=4.0 \AA$ to $D=1.0 \AA$ and with the angle α varied from 82 to 100°. At large values of $D(>2.25 \AA)$, the calculated charge distribution shows the system to be an ethyl cation flanked by two hydride ions. As the hydrogens H_{6} and H_{7} are brought closer ($D \leq 2.25$ \AA), the energy begins to rise (upper curve of Figure 6) but nowhere is a minimum in this curve found (see also Figure 7). The absolute values of the charges at C_{2}, H_{6}, and H_{7} begin to decrease at $D \leqslant 2.50 \AA$.

Scheme VIII. Symmetrical Geometries for the SN2 Displacement on Ethane ($D=d, \alpha=\beta, \theta=90^{\circ}, \gamma=120^{\circ}$)

The full Sn 2 calculations were next carried out by fixing D and minimizing the energy with respect to the other variables ${ }^{21}$ discussed above (Scheme I). The values of the variables were not allowed to "exceed"

Figure 7. Energies calculated for the "transition state" geometries for ethane (-) and ethylene ($-\cdots---$).
the initial ideal geometry, i.e., we allowed only $d \geq$ $1.10 \AA, \theta \geq 60^{\circ}, \beta \leq 109.47^{\circ}$, and $\gamma \geqslant 109.47^{\circ}$. All calculations reported here used Slater exponents of 1.625 for carbon and 1.2 for hydrogen; the Coulomb integral parameters were $-13.06(\mathrm{Hls}),-19.44(\mathrm{C} 2 \mathrm{~s})$, and $-10.67 \mathrm{eV}(\mathrm{C} 2 \mathrm{p}){ }^{12}$ The configurations calculated for various values of D, the "forming" bond, are shown in Table II, and the energies are plotted as

Table II. Energy-Minimized Configurations for Hydride Attack on Ethane

D, \AA	α	d, \AA	θ	β	E, $\mathrm{kcal} / \mathrm{mol}$
16	90	1.10	60	109.5	-5953.91
2.50	90	1.10	60	109.5	-5942.36
2.25	90	1.10	65	107	-5930.44
2.00	90	1.10	70	104	-5907.37
1.96	90	1.10	70	103	-5902.30
1.90	90	1.10	70	103	-5893.62
1.88	90	1.10	70	102	-5890.39

a function of D in Figure 6 (lower curve).

Ethylene. As in the calculations for ethane, a portion of the ethylene molecule was held invariant throughout the "reaction." The fixed bond lengths and angles and the variable lengths and angles are shown in Scheme IX. The nonreacting bond lengths
Scheme IX. Fixed and Variable Bond Lengths and Angles for Hydride Attack on Ethylene

(21) The increments for the variables were $0.05-0.2 \AA$ for d and d^{\prime}, $1-2^{\circ}$ for β and $\beta^{\prime}, 3-5^{\circ}$ for θ and θ^{\prime}, and 2° for α and α^{\prime}. The values of D and D^{\prime} were $16,2.50,2.25,2.00,1.96,1.90$, and $1.88 \AA$ and several values below $1.88 \AA$.
were held at $1.08 \AA(\mathrm{CH})$ and $1.34 \AA(\mathrm{C}=\mathrm{C})$. All of the atoms lie in the $x z$ plane, and the atomic p orbitals of the π bond lie in the $y z$ plane. The hydride ion, H_{5}, approaches the reaction center C_{2} from the backside relative to H_{4}, which will eventually leave as a hydride ion. The variable parameters are analogous to those used for the ethane system, and all angles are measured in the $x z$ plane.

Once again, the calculations were begun by investigating a set of possible symmetrical ($D^{\prime}=d^{\prime}$) structures (Scheme X). At large values of D^{\prime}, the

Scheme X. Symmetrical Geometries for $\mathrm{S}_{\mathrm{N}} 2$ Displacement on Ethylene ($D^{\prime}=d^{\prime}, \alpha^{\prime}=\beta^{\prime}, \theta^{\prime}=180^{\circ}$)

6
calculated charge distribution for the symmetrical species shows a vinyl cation flanked by two hydride ions. As H_{5} and H_{4} are moved toward C_{2}, the energy rises more steeply than for comparable values of D for the ethane "transition state" (Figure 7), and the absolute values of the charges on $\mathrm{C}_{2}, \mathrm{H}_{4}$, and H_{5} decrease. Again, no energy minimum is found along this curve.

Calculations on the vinyl SN^{2} pathway were then carried out by fixing D and searching for the energy minimum with respect to the other variables ${ }^{21}$ indicated in Scheme IX. The values of the variables were not allowed to "exceed" the initial ideal geometry, i.e., we allowed only $d^{\prime} \geqslant 1.08 \AA, \theta^{\prime} \geqslant 120^{\circ}$, and $\beta^{\prime} \leqslant$ 120°. The calculated configurations of the molecule at various values of D^{\prime} are shown in Table III, and

Table III. Energy-Minimized Configurations for Hydride Attack on Ethylene

D^{\prime}, \AA	α^{\prime}	d^{\prime}, \AA	θ^{\prime}	β^{\prime}	E, $\mathrm{kcal} / \mathrm{mol}$
16	$\left(90^{\circ}\right)$	1.08	120	120	-5185.00
2.50	84	1.08	130	119	-5169.78
2.25	84	1.08	135	116	-5153.98
2.00	86	1.08	150	110	-5125.70
1.96	86	1.08	150	109	-5120.06
1.90	86	1.08	155	106	-5109.76
1.88	86	1.08	155	106	-5106.43

these energies are plotted as a function of D^{\prime} in the lower curve in Figure 8.

Discussion

At $D=16 \AA$, the ethane molecule is unperturbed by the approaching hydride ion and remains so until D reaches a value of about $3 \AA$. At this point the energy of the system begins to rise (Figure 6, lower curve) but remains lower in energy than the symmetrical states (Figure 6, upper curve). This relationship holds until the hydride ion is $1.88 \AA$ away from C_{2}. We then cannot find a configuration of the system that is more stable than the symmetrical species. We therefore assume that the symmetrical configuration of the molecule at $1.88 \AA$ is close to the "transition state" of the reaction.

Figure 8. Calculated energies for the energy-minimized configurations (lower curve) and symmetrical configurations (upper curve) for H^{-}attack on ethylene.

The energy difference between this state and the reactants gives an activation energy ${ }^{22}$ of $63.5 \mathrm{kcal} / \mathrm{mol}$.

The same procedure is used in the ethylene system (Figure 8). The unsymmetrical, energy-minimized structure remains lower in energy than the corresponding symmetrical structure until $D^{\prime}=1.88 \AA$ At this point the symmetrical "transition state" is lower in energy. The activation energy calculated for this reaction is about $78 \mathrm{kcal} / \mathrm{mol}$.

The electron-electron and nuclear-nuclear repulsion terms missing from EHT calculations make these two barrier heights somewhat ambiguous, especially in view of the large geometrical changes involved in going from ground to transition states in these reactions. If such error contributions are similar for ethane and ethylene, however, the $\Delta \Delta E^{\ddagger}$ of $14.5 \mathrm{kcal} / \mathrm{mol}$ should be more reliable than the absolute ΔE^{\ddagger} values.

We should emphasize that the pairs of curves in Figures 6 and 8 do not cross at $D\left(D^{\prime}\right)=1.88 \AA$. On the multidimensional reaction surface they represent two structurally distinct species. When $D\left(D^{\prime}\right)=1.90$ \AA, the unsymmetrical system lies below the symmetrical. But when $D\left(D^{\prime}\right)=1.88 \AA$, the system has presumably shifted to some point above the threshold. We may then take a path leading from the unsymmetrical structure to the symmetrical one. This involves stretching the $\mathrm{H}_{6}-\mathrm{C}_{2}$ bond in ethane ($\mathrm{H}_{4}-\mathrm{C}_{2}$ for ethylene) and changing its orientation, moving the nonreacting hydrogens, and shifting the angle (α or α^{\prime}) of the hydride ion. When these intermediate points are calculated, there appears to be an additional barrier of $\sim 5 \mathrm{kcal} /$ mol. ${ }^{23}$ With the molecule in the unsymmetrical configuration at $D\left(D^{\prime}\right)=1.88 \AA$, our location on the en-
(22) (a) See M. Menzinger and R. Wolfgang, Angew. Chem., Int. Ed. Engl., 8, 438 (1969); (b) since our calculated energy barriers are high, the activation energy should be close to the threshold energy. ${ }^{22 a}$
(23) We have not carried out detailed calculations to determine the minimum barrier for this pathway due to the large geometric changes involved.
ergy surface with respect to the "transition state" is uncertain, and the path we calculate in getting to the symmetrical species is also vague. We cannot therefore determine whether or not all approaches to the transition state must go over this additional ~ 5-kcal barrier, i.e., we cannot tell if our transition state may in fact be an intermediate. Of course, we might be able to establish the nature of the calculated transition state by doing detailed calculations in the region of $D\left(D^{\prime}\right)=$ 1.90-1.86 \AA, but these calculations are likely to be expensive and-in view of the approximate nature of the calculations themselves-perhaps worthless.
Even if the additional barrier is real, its magnitude is judged to be close to the same value in both systems. This does not affect the main conclusion of our investigation. The energy barrier for the $S_{\mathrm{N}} 2$ reaction of a hydride ion with ethylene is predicted to be $14.5 \mathrm{kcal} / \mathrm{mol}$ higher than the barrier for the $S_{\mathrm{N}} 2$ attack on ethane.

Ritchie and Chappell have recently reported MOSCF calculations using linear combinations of Gaussian functions on the $\mathrm{S}_{\mathrm{N}} 2$ hydride attack on methane. ${ }^{24}$ Their calculations show a threshold energy of $48.7 \mathrm{kcal} /$ mol and a reacting bond distance, D, in the transition state of $\sim 1.76 \AA$. Our results, i.e., $63.5 \mathrm{kcal} / \mathrm{mol}$ and $D=1.88 \AA$, for the ethane system are similar and differ in the direction one might expect. ${ }^{24 a}$
Since a symmetrical transition state is not implicitly required by the principle of microscopic reversibility, ${ }^{25}$ Ritchie and Chappell looked for structures of $C_{3 v}$ symmetry as well as those of $D_{3 n}$ symmetry. The lowest energy state was of the latter symmetry class (triangular bipyramid). ${ }^{24}$ For ethane one might expect the "transition state" to have a pseudo- $D_{3 h}$ symmetry, that is with $\alpha=90^{\circ}, \gamma=120^{\circ}$, and $\theta=90^{\circ}$ (see Scheme VII). However, the methyl group is evidently not a small perturbation, and we find $\alpha=96^{\circ}$ (with θ and γ assumed to be 90 and 120°, respectively). The incoming and leaving hydrogen atoms are directed "away" from the methyl substituent in the transition state. In the case of ethylene, this orientation in the transition state, α^{\prime}, is 98°. The reasons for the low energy of these conformations are not completely clear, but evidently have to do with a careful balance between favorable orbital overlap and unfavorable steric interactions. The indications that $\alpha\left(\alpha^{\prime}\right)$ need not be 90° and that $D\left(D^{\prime}\right)$ may be as large as $1.88 \AA$ suggest that steric crowding in the SN2 transition state of ethylene may not be so overwhelming as has been assumed. ${ }^{20,26}$
In Figure 7, which shows the energies for symmetrical SN2 geometries, the curves are drawn so that we may compare relative energy differences between ground and energized systems at a given value of $D\left(D^{\prime}\right)$. At
(24) C. D. Ritchie and G. A. Chappell, J. Amer. Chem. Soc., 92, 1819 (1970).
(24a) Note Added in Proof. A modified PNDO-SCF calculation by N. L. Allinger, J. C. Tai, and F. T. Wu (ibid., 92, 579 (1970)), of the $D_{3 h}$ "transition state" for $\mathrm{CH}_{5}-$ gives reacting partial bond lengths of $1.210 \AA$. This distance is inconsistent with the longer ($\sim 1.76 \AA$) value calculated by Ritchie and Chappell ${ }^{24}$ and with 1.74 and $1.63 \AA$ calculated by W. Th. A. M. Van der Lugt and P. Ros (Chem. Phys. Lett., 4, 389 (1969)) and J. J. C. Mulder and J. S. Wright (ibid., 5, 445 (1970)), respectively. We feel the larger values are intuitively more reasonable, although the reasons for the differences are not readily apparent.
(25) R. L. Burwell, Jr, and R. G. Pearson, J. Phys. Chem., 70, 300 (1966).
(26) The calculated overlap populations indicate that the total Slater interaction may be nearly the same for the ethane and ethylene transition states.
$16 \AA$ (not shown in Figure 7), $\Delta \Delta E^{\ddagger} \sim 7 \mathrm{kcal} / \mathrm{mol} ;{ }^{22 \mathrm{~b}}$ at $1.88 \AA, \Delta \Delta E^{\ddagger} \sim 7+7.5 \sim 14.5 \mathrm{kcal} / \mathrm{mol}$. As $D\left(D^{\prime}\right)$ becomes even shorter, $\Delta \Delta E^{\ddagger}$ increases, since the curve for ethylene is steeper than the curve for ethane. It is interesting that while the transition state for the ethylene reaction lies relatively higher in energy than the ethane reaction, the partial bond lengths, D and D^{\prime}, are predicted to be nearly identical.

The calculated charge distributions and overlap populations for the transition states for ethane and ethylene, as shown in Scheme XI, are very similar. Examination of the relative energy changes that occur for the occupied molecular orbitals as a hydride ion approaches ethane and ethylene shows that in both

Scheme XI. Calculated Charge Distributions and Overlap Populations for SN2 Transition States ($D=d=D^{\prime}=d^{\prime}=1.88 \AA$)

cases, most of the MO energies remain nearly constant or change by $<0.2 \mathrm{eV}$, but one orbital undergoes a dramatic increase in energy (decrease in absolute value). This orbital consists entirely of the 1 s atomic orbital on the hydride ion when $D\left(D^{\prime}\right)=16 \AA$. As $D\left(D^{\prime}\right)$ decreases, this MO shows increasing contributions from atomic orbitals on the nonreacting hydrogens at C_{2}, from the 1 s orbital on the leaving hydrogen, and a contribution from the $2 \mathrm{p}_{x}$ and 2 s orbitals at C_{2}. (In the case of ethylene, there is also a contribution from the 2 s and $2 \mathrm{p}_{z}$ orbitals at C_{1}.)

We must emphasize some rather perplexing aspects of the conformational details of these reactions. Table II shows that hydride approaches the ethane molecule at $90^{\circ}(\alpha), \beta$ begins to decrease as D decreases, and θ begins to increase. But the configuration appears to become "stuck" by the time the hydride distance, D, has reached $2.00 \AA$. And by the time the energy has come very close to that of the assumed "transition state," i.e., at $D \approx 1.90 \AA$, the nonreacting hydrogens (H_{4} and H_{5}, Scheme VII) have moved only about onethird of the distance toward the transition geometry, the leaving hydrogen has changed its orientation by about three-fourths of the total change, and the "breaking" bond has not begun to stretch at all.

The configurations shown in Table III for hydride attack on ethylene show similar trends. In this case it is more favorable by $\sim 1 \mathrm{kcal} / \mathrm{mol}$ for the hydride ion to approach at an angle of $84-86^{\circ}$, evidently because the nonreacting hydrogen $\left(\mathrm{H}_{3}\right.$, Scheme IX) interferes more. By the time the hydride ion is $1.90 \AA$ away, the nonreacting hydrogen has moved one-half to two-thirds of the way toward the symmetrical geometry and the leaving hydrogen has moved about two-thirds through its angle, but the length of the breaking bond remains $1.08 \AA$. It is also interesting that the hydride ion tends to approach at an angle $<90^{\circ}$ but that the orientation at the transition state has $\alpha=96-98^{\circ}$.

These large structural differences between the isoenergetic points on the two curves in Figure 6 (and Figure 8) may be a result of either the approximations inherent in extended Hückel theory, a significant energy minimum at the symmetrical activated complex, or significant asymmetry in the true $\mathrm{SN}_{\mathrm{N}} 2$ transition state. While we have no way of ruling out these possibilities, it is important to at least consider a further alternativethat the calculations are qualitatively correct in suggesting the substrate molecule retains a configuration close to that of its ground state for as long as possible during the reaction, and then undergoes a major structural reorganization in the energy region close to the transition state.

Comparison of the Sn2 Pathway to Other Mechanisms. As we have discussed above, our calculations show that with a hydride ion nucleophile and leaving group the $\mathrm{S}_{\mathrm{N}} 2$ attack on ethylene is less favorable energetically than the $\mathrm{S}_{\mathrm{N}} 2$ attack on ethane. It would be tempting to try to compare the calculations for the SN2 attack to ones for SN_{l} dissociation to form vinyl cations, e.g., eq 4. This is not possible using EHT calculations.

$$
\begin{equation*}
\mathrm{CH}_{2}=\mathrm{CH}_{2} \longrightarrow \mathrm{CH}_{2}=\mathrm{C}^{+} \mathrm{H}+\mathrm{H}- \tag{4}
\end{equation*}
$$

The $\operatorname{SN} 2$ reaction is a negatively charged system and the $\mathrm{S}_{\mathrm{N}} 1$ reaction is (overall) neutral. The missing electron repulsions will not be approximately cancelled when the energy values for the two systems are compared.

We can, however, make a reasonable comparison of the SN 2 reaction of H^{-}and ethylene to the additionelimination reaction, eq 5 . We calculate a $\Delta E=18$

$\mathrm{kcal} / \mathrm{mol}$ for this reaction. Presumably the reaction coordinate would involve hydride attack on the π system. Although we have not carried out any detailed calculations to arrive at an energy barrier for the reaction, it is reasonable to assume that the energy barrier would be of the same order as ΔE, i.e., a threshold energy of $20-40 \mathrm{kcal} / \mathrm{mol}$ for the addition. Since this system and the $\mathrm{SN}_{\mathrm{N}} 2$ reaction on ethylene are both negatively charged and the transition states of intermediates are of comparable overall geometry, we should expect a comparison of the reactions to be reasonable. The threshold energy of $78 \mathrm{kcal} / \mathrm{mol}$ calculated for the S N 2 reaction suggests that an addition-elimination pathway is energetically more favorable by $40-60 \mathrm{kcal} / \mathrm{mol}$.

Conclusions

Our extended Hückel calculations predict the energy barrier for an SN 2 hydride displacement on ethylene to be $14.5 \mathrm{kcal} / \mathrm{mol}$ higher than that for similar hydride attack on ethane. Qualitatively this energy difference indicates that the SN 2 attack at an sp^{2} carbon is energetically more difficult than SN 2 attack at an sp^{3} center, as might have been intuitively expected. It does not, by any means, rule out the possibility that SN 2 attack at a vinylic center is energetically feasible, particularly in other reaction systems.

The comparison of the $\mathrm{S}_{\mathrm{N}} 2$ attack on ethylene with the addition-elimination pathway does suggest, however, that if an $\mathrm{SN}_{2} 2$ pathway is not particularly unfavorable in an absolute sense, the reason this mechanism has not been observed for vinylic systems is due to the relative energetic favorability of other reaction pathways, such as addition-elimination, elimination-addition, or SN_{N} reactions. It remains to be seen if reactants and reaction conditions can be devised in which the lowest energy path will involve a direct displacement at a vinylic center.

Finally, an examination of atomic motions in the region of the transition states for these reactions suggests that the leaving $\mathrm{C}-\mathrm{H}$ bond may not undergo very much cleavage until the new $\mathrm{C}-\mathrm{H}$ bond is nearly formed, thus necessitating a large degree of atomic motion in the region of the transition state energy. This sort of behavior may be an artifact of the approximations involved in the EHT method, or of our assumption that the transition state is symmetrical. It may reflect the behavior of the real system, however, and although this conflicts to some extent with our intuitive feeling that one-step chemical reactions ought to occur "smoothly," the destabilization due to molecular compression in such a situation may be compensated by significant stabilization due to increased bonding interactions. In our opinion, this sort of inference is an example of one of the main justifications for carrying out highly approximate theoretical studies: even if the quantitative results are suspect, one often generates new ways of thinking about chemical reactions which can provide general insight or influence the direction of future experimental studies.

Acknowledgments. We wish to thank Professor J. D. Roberts and members of his research group for helpful discussions and for providing modified copies of the Hoffmann EHT program (modified by G. A. Petersson) and $x y z$ coordinate program (P. M. Kuznesoff, modified by R. G. Parker). We also gratefully acknowledge financial support from the National Institutes of Health.

[^0]: (14) (a) For a theoretical discussion of the effect of methyl substitution on the linear vinyl cation, see R. Sustmann, J. E. Williams, M. J. S. Dewar, L. C. Allen, and P. von R. Schleyer, J. Amer. Chem. Soc., 91, 5350 (1969); (b) the reasons for this preference may have nothing to do with the empty orbital: see J. P. Lowe, ibid., 92, 3799 (1970).

[^1]: (16) From the data in Table I in ref 2 d one can calculate that solvent attack on the linear cation "trans" to the vinyl methyl group is favored by as much as $0.10 \mathrm{kcal} / \mathrm{mol}$ or disfavored by as much as $0.04 \mathrm{kcal} / \mathrm{mol}$ relative to "cis" attack. The "average" value is $0.035 \mathrm{kcal} / \mathrm{mol}$ in favor of "trans" attack (at 25°).
 (17) See A. Streitwieser, Jr., "Solvolytic Displacement Reactions," McGraw-Hill, New York, N. Y., 1962.

